
Web Application’s Security
Demystified

By: Ashish Kumar
akumar@ipcolony.com
©2019

Learn some very basic concepts of securing web applications without using technical jargons.

Web (http) protocol

• It is one of the easiest protocol and it is “stateless.” The receiver has
no idea, what the user did before.

• It has not changed since Al Gore invented the internet.

• Technocrats and software companies have added unnecessary
jargons and terminology, making it harder to understand.

Web protocol – Simplistic use case

User Web Server

1. Request: Give me your catalog/pricing

2. Response: Ok! There you go.

Analysis of the previous slide

• There is no security.

• Web server delivers the catalog of the products as requested.

What if the pricing varied from user to user?

After all, Boeing being our best customer gets the best prices.

Web protocol – Let us start again

User Web Server

1. Request: Give me your catalog/pricing

2. Response: Sorry, I don’t know you. Tell me who you are?

Web protocol – Login completed

User Web Server

1. Request: Here is my user id and password.

2. Response: Ok! Welcome Mr. Boeing!.

Web protocol – Post login request

User Web Server

1. Request: Give me your catalog/pricing

2. Response: Sorry, do I know you?

3. WTH? I just told you who I was.

• Web server has no idea of what the user did before.

• The user has to remind the webserver, every time (every request) who he is, because web is
stateless.

Web protocol – A better Login process

User Web Server

1. Request: Here is my user id and password.

2. Response: Ok! Welcome Mr. Boeing!
Please include the following phrase in all your
future messages:
“[ae4gbbb-7h4545545-tyyeeq].”

Web protocol – Subsequent requests

User Web Server

1. Request: Give me your catalog/pricing.
Oh by the way you asked me to include this phrase in every message:
“[ae4gbbb-7h4545545-tyyeeq].”

2. Response: Ok! Welcome Mr. Boeing!
Here is the special pricing catalog, just for you.

• Web protocol is stateless. It does not remember any past
conversations. The user has to jog the web server’s memory about its
past interactions, if any.

• The phrase sent by the server, is referred to as the token. It works
almost like the hand stamping at an event, where once your hand is
stamped, you don’t have to take out your ID every time you go in and
out of the venue.

• If you understood the previous slides without me using any jargons,
then you know the stuff is really simpler than what it has been made
to be.

Web protocol – Lessons learned

Web protocol – The monkey in the middle

User Web Server

1. Request: Here is my user id and password.

2. Response: Ok! Welcome Mr. Boeing!.

I am going to steal
his user id and

password!

The Evil monkey: Courtesy Family Guy

Web protocol – The monkey in the middle

User Web Server

1. Request: Here is my user id and password.

2. Response: Ok! Welcome Mr. Boeing!.

Damn!

The Evil monkey: Courtesy Family Guy

No monkey is ever
going to see my

encrypted message.

https

Don’t run your site without https.

Nobody outsmarts
the evil monkey!

Web protocol – Monkeys are everywhere

User Web Server

1. Request: Here is my user id and password.

2. Response: Ok! Welcome Mr. Boeing!.

The Evil monkey: Courtesy Family Guy

No monkey is going
to see my

encrypted message.

https

The Monkey wins! Mr. Boeing should not have used the public Wi-Fi for important matters.
Even https is prone to hacking under unknown networks.

Let us get a bit technical – Login process

User Web Server

1. Request: Here is my user id and password.

3. Response: Ok! Welcome Mr. Boeing!.

https Site’s
code

List of users
User1, Password: Hello
User2, Password: Rt7Ui@YH

2. Checking your user id and password against my database.

Monkeys are still everywhere

User Web Server

1. Request: Here is my user id and password.

3. Response: Ok! Welcome Mr. Boeing!.

https Site’s
code

List of users
User1, Password: Hello
User2, Password: Rt7Ui@YH

2. Checking your user id and password against my database.
You are firing me?
I am going to sell

these user ids and
passwords on eBay!

The Monkey wins! You, Mr. Developer should NOT have stored passwords in plain text!
Store only one way encrypted passwords so that they cannot be decrypted if the information was compromised.

The Evil monkey: Courtesy Family Guy

Let us get a bit technical – What does a typical web message look like

Headers

Body

A web message is a long string of characters divided into two logical parts.

Good stuff, the user
sees on the page as

well as form data
posted by the user.

A lot of important stuff, but
completely transparent to the

user.

+

The cookies are one of the ways to restore state in a stateless environment.
They are stored in the browser and get saved on the user’s hard drive.

Sending the token using cookies

User Web Server

1. Request: Here is my user id and password.

2. Response: Ok! Welcome Mr. Boeing!

= “[ae4gbbb-7h4545545-tyyeeq]”

https

Looks great so far! But the evil monkey is coming.

The monkey steals the cookies

IPColony.com’s cookies

I am going to grab
those cookies!

The Evil monkey: Courtesy Family Guy

A malicious script running from the other browser tab has equal access to another
site’s cookies and can make use of it.

Avoid using cookies to store sensitive information, use http headers instead.
Secure your site to not accept messages from another domain.

• The cookies are not the best places to hide secret information as they
are susceptible to malicious scripts running from the other tabs of a
browser.

• Use of cookies does not require any extra coding effort as they are
always transmitted to the server.

• A secured solution is to store information in such a way that one
browser tab does not know about the second one. This can be
achieved by keeping the secret information in browser session’s
memory. This poses a small challenge. You have to write code to
inject this secret information (Example: session token) in every call
made to the server.

Lessons learned

• Be mindful, the web is a stateless environment.

• Use https instead of http.

• Use token based exchanges after logins.

• Store only one way encrypted passwords in the database.

• Prefer request headers over cookies.

• Don’t try to write your own encryption algorithms. Leverage the
available work already done by much smarter people.

Summary

Next Step
Download the code of my compact ASP.Net application which covers many of these concepts.
https://ipcolony.com/was

